CALCULATION OF DIPOLE MOMENTS OF HETEROATOM MOLECULES

Lemont B. Kier

The Ohio State University, College of Pharmacy

Columbus, Ohio

(Received 19 July 1965)

The calculation of the dipole moments of heteroatom-containing molecules has not met with frequent success. In particular, the estimation of the σ bond contribution to the total dipole moment has been difficult. This has been commonly treated by using standard bond moments and summing them vectorially (1). As a first approximation the σ and π moments are regarded as being independent, hence a calculated total dipole moment is a vectorial sum of the two (2).

We have calculated the μ_{σ} and μ_{π} using semi-empirical molecular orbital methods and have obtained calculated dipole moments in good agreement with experimental values. The μ_{π} were calculated from charge densities obtained by the use of the Huckel LCAO-MO ω -Technique. The heteroatom parameters used were those of Streitwieser (3), with only two modifications. We found it necessary to employ a slightly higher h value for the pyridine nitrogen which gave a better dipole moment agreement. For the same reason we employed a slightly higher value for the h of chlorine. The values used are listed in Table I.

327**3**

N 0.8 1. N 1.7 0. O 1.3 0. O 2.7 0. C1 2.8 0.	Values of h and	k Parameters	Used
o 1.3 o. o 2.7 o. C1 2.8 o.			k _{cx} 1.0
ö 2.7 0. C1 2.8 0.	Ň	1.7	0.7
Cl 2.8 0.	ō	1.3	0.8
	ö	2.7	0.6
СН ₃ 3.0 0.	Cl	2.8	0.5
	СНз	3.0	0.7

TABLE I

The μ_{σ} values were calculated from the charge densities of the σ skeleton, atoms using the method of Del Re (4). The procedure is an adaptation of the LCAO-MO method, treating all σ bonds as localized orbitals, $\Psi_{AB} = C_A \chi_A + C_B \chi_B$ to which an inductive effect is introduced from neighboring atoms. Appropriate values of the Coulomb and resonance integrals are written in terms of a standard α and β . The secular equations in matrix form are then

1

$$\begin{vmatrix} \alpha + \delta_{A}\beta - E & \epsilon_{AB}\beta \\ \epsilon_{AB}\beta & \alpha + \delta_{B}\beta - E \end{vmatrix} = 0$$

ı

The resonance integral modifying parameter ϵ_{AB} is assumed to be independent of surroundings, while the Coulomb integral modifying terms δ_A and δ_B are assumed to be influenced by atoms bound directly to atoms A or B. This influence is accounted for by the use of an auxiliary inductive parameter γ_{AB} , which is characteristic of the inductive effect of all neighboring atoms, 3. The corrected expression for δ_A becomes

$$\delta_{A} = \delta_{A}^{\circ} + \sum_{B \text{ adj to } A} \gamma_{A(B)} \delta_{B}$$

The charge density on atom A due to neighboring atom B is then calculated from the corrected δ_A and δ_B values and the ϵ_{AB} parameter

$$q_{A}^{(B)} = \frac{\frac{\delta_{B} - \delta_{A}}{2 \epsilon_{AB}}}{\sqrt{1 + \left(\frac{\delta_{B} - \delta_{A}}{2 \epsilon_{AB}}\right)^{2}}}$$

The total charge density on atom A then becomes

$$Q_A = \sum_{all, B} q_A^{(B)}$$

The values of the parameters δ^{0} , γ_{AB} and ϵ_{AB} were usrived by Del Re from dipole moment values and electronegativities (4). They were used in our calculations and are listed in Table II.

TABLE II

Values of Parameters Used in the σ Bond Treatment

			<u>C(N)</u>				
ϵ_{AB}	1.00	1.00	1.00	0.95	0.45	0.45	0.65
^у а(в)	0.3	0.1	0.1	0.1	0.3	0.3	0.2
^γ b(A)	0.4	0.1	0.1	0.1	0.4	0.4	0.4
δA	0.07	0.07	0.07	0.07	0.24	0.40	0.07
δ _B	0.00	0.07	0.24	0.40	0.00	0.00	0.35

The charge densities and calculated and experimental dipole moments are listed in Table III and refer to the structures and atom positions drawn in Figure 1. The total dipole moment, $\mu_{\rm T}$ was obtained by vectorial addition of μ_{σ} and μ_{π} . The agreement in all cases was about 95% of the experimental value.

TABLE III

Charge Densities and Dipole Moments

Compound	Atom	Charge I 9 ₀	Densities q_{π}	$\frac{\text{Calculated }\mu}{\mu_{\sigma} \mu_{\pi} \mu_{T}}$		Experimental μ μ Ref.		
Formaldehyde	1	134	288	0.50			2.17	(5)
rormandenyde				0.90	1.02	2.12	2.11	(5)
	2	+.046	+.288					
	3	+.044						
Furan	1	310	+.080	1.46	0.71	0.75	0.72	(6)
	2	+.100						
	3	+.038	009					
	4	011						
	5	+.028	032					
Pyridine	1	142	182	0.74	1.21	1.95	2.15	(7)
	2	+.027	+.057					
	3	+.036						
	4	025	+.015					
	5	+.032						
	6	- 029	+.039					
	7	+.031						
Pyrrole	1	+.197		0.08	1.52	1.44	1.54	(8)
	2	371	+.169					
	3	+.039	026					
	4	+.038						
	5	022	059					
	6	+.032						

		Charge	Densities	Calculated µ			Experimental μ	
Compound	Atom	q _σ	q _π	^μ σ	μπ	μτ	μ	Ref.
Toluene	l	+.038						
	2	125	+.026	0.05	0.46	0.41	0.39	(9)
	3	+.011	+.016					
	4	031	014					
	5	+.031						
	6.	031	-,002					
	7	+.031						
	8	+.031	010					
	9	+.031						
Chlorobenzene	ı	185	+.015	2.02	0.28	1.74	1.58	(10)
	2	+.119	+.008					
	3	008	007					
	4	+.033						
	5	031	001					
	6	+.042						
	7	036	006					
	8	+.030						

TABLE III (Continued)

		Charge 1	Densities	Calculated µ			Experimental µ	
Compound	Atom	٩ _{σ.}	q _π	μσ	μ_{π}	μτ	μ	Ref.
Phenol	1	+.299		1.80	0.39	1.58	1.60	(11)
	2	471	+.022					
	3	+,140	+.012					
	4	018	011					
	5	+.032						
	6	029	002					
	7	+.031						
	8	031	009					
	9	+.031						
Aniline	i	+.216		1.32	0.73	1.54	1.53	(12)
•	2	535	+.052					
	3	+.085	+.017					
	4	024	021					
	5	+.032						
	6	032	004					
	7	+.031						
	8	031	017					
	9	+.031				_		

TABLE III (Continued)

FIGURE 1

Structures Calculated with Numbering

Formaldehyde

Pyridine

Toluene

Phenol

Pyrrole

Chlorobenzene

Aniline

ACKNOWLEDGEMENT

The research was supported in part by National Institutes of Health Grant No. GM-13100-01.

REFERENCES

- G. W. Wheland, <u>Resonance in Organic Chemistry</u>, J. Wiley and Sons, New York, (1955) p. 209.
- (2) R. Daudel, R. Lefebvre and C. Moser, <u>Quantum Chemistry</u>, Interscience Publ., New York, (1959) p. 201.
- (3) A. Streitwieser, Jr., J. Amer. Chem. Soc. 82, 4123 (1960).
- (4) G. Del Re, J. Chem. Soc. (1958) 4031.
- (5) J. K. Bragg and A. H. Sharbaugh, Phys. Rev. 75, 1774 (1949).
- (6) C. G. Lefevre, R. J. W. Lefevre and G. M. Parkins, <u>J. Chem. Soc</u>. (1960) 1814.
- (7) B. B. De More, W. S. Wilcox and J. H. Goldstein, <u>J. Chem. Phys. 22</u>, 876 (1954).
- (8) L. Jannelli and P. G. Orsini, Gazz Chim. Ital. 89, 1467 (1959).
- (9) W. Schaafs, Z. Physik Chem. 196, 413 (1951).
- (10) T. Hanai, N. Koizumi and R. Gotoh, <u>Bull. Inst. Chem. Res</u>. Kyoto Univ., <u>39</u>, 195 (1961).
- (11) E. V. Goode and D. A. Ibbitson, J. Chem. Soc. (1960) 4265.
- (12) A. Vyas and H. N. Srivastava, <u>J. Sci. Ind. Res</u>. (India) <u>17B</u>, 377 (1958).